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A B S T R A C T

Brain imaging studies have revealed that functional and structural brain connectivity in the so-called triple
network (i.e., default mode network (DMN), salience network (SN) and central executive network (CEN)) are
consistently altered in schizophrenia. However, similar changes have also been found in patients with major
depressive disorder, prompting the question of specific triple network signatures for the two disorders. In this
study, we proposed Supervised Convex Nonnegative Matrix Factorization (SCNMF) to extract distributed multi-
modal brain patterns. These patterns distinguish schizophrenia and major depressive disorder in a latent low-
dimensional space of the triple brain network. Specifically, 21 patients of schizophrenia and 25 patients of major
depressive disorder were assessed by T1-weighted, diffusion-weighted, and resting-state functional MRIs.
Individual structural and functional connectivity networks, based on pre-defined regions of the triple network
were constructed, respectively. Afterwards, SCNMF was employed to extract the discriminative patterns.
Experiments indicate that SCNMF allows extracting the low-rank discriminative patterns between the two dis-
orders, achieving a classification accuracy of 82.6% based on the extracted functional and structural abnorm-
alities with support vector machine. Experimental results show the specific brain patterns for schizophrenia and
major depressive disorder that are multi-modal, complex, and distributed in the triple network. Parts of the
prefrontal cortex including superior frontal gyri showed variation between patients with schizophrenia and
major depression due to structural properties. In terms of functional properties, the middle cingulate cortex,
inferior parietal lobule, and cingulate cortex were the most discriminative regions.

1. Introduction

Schizophrenia (SZP) and major depressive disorder (MDD) are the
two most common psychiatric disorders with high life-long prevalence
of about 1% (Kuhn and Gallinat, 2013; Lehrer et al., 2005) and 15%
(Kahn and Sommer, 2015; McGrath et al., 2008), respectively. Ac-
cording to the diagnostic manuals of the American Psychiatric Asso-
ciation (DSM-5) (Association, 2013) and World Health Organization
(ICD-10) (Organization, 2004), brain disorders are defined by beha-
vioral and mental symptom patterns and their courses. Concerning

biological signs, schizophrenia and depression are characterized by
multiple brain alternations (Jarskog et al., 2007; Owen et al., 2016),
especially in large-scale intrinsic brain networks (Dong et al., 2017; He
et al., 2018; Kaiser et al., 2015; Wotruba et al., 2014). Large-scale brain
networks are of special interest since (1) impairments at micro-scales
converge on changes in large-scales. (2) impairments of large-scale
systems are thought to mediate behavioral phenotypes (Park and
Friston, 2013). Large-scale intrinsic brain networks are defined by the
specific functional connectivity of ongoing, slowly fluctuating brain
activity, which is typically measured by correlated resting-state
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functional magnetic resonance imaging (rs-fMRI) signal time courses
(Fox and Raichle, 2007). They represent a basic form of organized brain
activity (Buckner et al., 2013), which is impacted in both depression
and schizophrenia (Kaiser et al., 2015; Shao et al., 2018; Whitfield-
Gabrieli et al., 2009). Particularly three networks are affected, i.e., the
default mode network (DMN), salience network (SN) and central ex-
ecutive network (CEN), which together constitute the so-called triple
network (Menon, 2011). Recent meta-analyses of rs-fMRI studies de-
monstrated extended patterns of increased and decreased functional
connectivity in DMN, SN, and CEN in both schizophrenia and depres-
sion (Dong et al., 2017; Kaiser et al., 2015). This overlap of dyscon-
nectivity across both disorders, however, prompts the question of the
disorder-specific network changes in the triple network, i.e., are these
discriminative patterns of dysconnectivity within the triple network
separating schizophrenia from major depression.

Concerning discriminative patterns, a large body of neuroimaging
techniques has been employed to uncover the specific functional and/or
structural changes in schizophrenia and major depressive disorder.
They usually discriminate the two disorders using diverse classification
algorithms (Arbabshirani et al., 2017). For instance, in the study of
Iwabuchi et al. (2013), GM and WM maps were measured by structural
MRI, and support vector machine (SVM) (Cortes and Vapnik, 1995) was
introduced to classify schizophrenia and healthy control with
66.6%–77% accuracy. Venkataraman et al. (2012) employed rs-fMRI to
determine the large-scale functional connectivity in schizophrenia and
healthy control, and random forests classification algorithm (Breiman,
2001) was adopted to perform a classification task, yielding 75% ac-
curacy. Serpa et al. (2014) investigated major depression disorder with
gray matter (GM), white matter (WM) and regional analysis of brain
volumes in normalized space (RAVENS) to distinguish MDD from
healthy control with SVM. Similarly, Cao et al. (2014) used SVM to
identify major depressive disorder with functional connections (FC).

In the work (Koutsouleris et al., 2015), principal component ana-
lysis (PCA) (Jolliffe, 2011) and recursive feature elimination (RFE)
(Guyon et al., 2002) were jointly used to acquire significant features.
Finally, a linear SVM was introduced to separate patients of

schizophrenia from those of depression based on structural brain
changes, which achieved an accuracy of 78%. These previous works
indicate that the two disorders can be separated by brain character-
istics. These findings together with the multitude of not totally con-
vergent disorder signatures of previous imaging studies (Bora et al.,
2012; Frodl et al., 2008; Kaiser et al., 2015; Kieseppa et al., 2010; Liao
et al., 2013; Orliac et al., 2013), suggest that the specific changes in the
two disorders might be complex, subtle, and distributed across the
triple networks.

Therefore, we propose a new variant of nonnegative matrix factor-
ization method, which aims to uncover the complex and subtle struc-
tural and functional connectivity changes in patients of schizophrenia
and major depressive disorder. Specifically, patients with major de-
pressive disorder, schizophrenia and healthy controls were assessed by
T1-weighted, diffusion-weighted and rs-fMRI. The brain structural and
functional connectivity networks were constructed based on the pre-
defined sub-regions of DMN, SN, and CEN, respectively. Afterwards, the
Supervised Convex Nonnegative Matrix Factorization (SCNMF) was
proposed to capture the complex patterns between major depressive
disorder and schizophrenia. Experiments indicate that SCNMF allows
extracting group-specific subspace network patterns to distinguish be-
tween patients with major depression and schizophrenia (82.61%
classification accuracy, 80.95% specificity and 84.00% sensitivity).
Finally, these structural and functional group-specific low-rank network
patterns are further explained in the original brain network space with
a backtracking strategy.

2. Materials and methods

To exploit low-rank network signatures in patients of schizophrenia
and major depressive disorder, a non-negative matrix factorization
approach is proposed, which involves the following steps: data acqui-
sition, brain network construction, brain connectivity map construc-
tion, and NMF-based prediction (Fig. 1).

Fig. 1. The flowchart of group-specific patterns discovering between Schizophrenia and Major Depressive Disorder with Nonnegative Matrix Factorization. (i) The
triple network nodes are identified via an ICA based method. The brain image is visualized by BrainNet toolbox (Xia et al., 2013). (ii) Diffusion MRI and functional
MRI data are respectively preprocessed to tractography and time series as described in Section 2.3. (iii) Individual structural and functional connectivity networks,
105× 105 matrices, are constructed. (iv) Structural and functional connectivity maps of 25 MDD and 21 SZP patients with 5460 brain network connectivity are
performed. (v) With leave-one-out cross validation strategy, structural and functional connectivity maps were concatenated as joint data matrix for multimodal case.
(vi) The joint data matrix is decomposed into latent space, consisting of basis matrix and encoding patterns, by Supervised Convex Nonnegative Matrix Factorization.
(vii) The extracted patterns of each patient are converted to support vector machine as features for training and classification.
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2.1. Subjects

Twenty-one patients with schizophrenia and twenty-five patients
with major depression participated in current study (Table 1). The data
used in our study have been described in detail previously in (Manoliu
et al., 2014a) and (Meng et al., 2014). In brief, the study was approved
by the local Ethics Committee of Technische Universität München,
Klinikum rechts der Isar. All participants provided informed consent in
accordance with the Human Research Committee guidelines of Tech-
nische Universität München. Patients were in-patients and recruited
from the Department of Psychiatry of the Technische Universität
München by treating psychiatrists, while healthy controls were re-
cruited from the area of Munich by word-of-mouth advertising. Parti-
cipants' examination included medical history, psychiatric interview,
and psychometric assessment. Psychiatric diagnoses were based on
DSM-IV (Association, 2000). The Structured Clinical Interview for DSM-
IV was used to assess the presence of psychiatric diagnoses (Spitzer
et al., 1992). Severity of clinical symptoms was measured with the
Hamilton Rating Scale for Depression (Hamilton, 1960) and the Positive
and Negative Symptom Scale (Kay et al., 1987). The global level of
social, occupational, and psychological functioning was measured with
the Global Assessment of Functioning Scale (Spitzer et al., 1992).

For schizophrenic patients, schizophrenia was the primary diag-
nosis. All included patients were diagnosed with paranoid schizo-
phrenia during acute psychosis as indicated by clinical exacerbation
and increased positive symptom scores on the PANSS. Seven out of
twenty-one patients had significant hallucinations (PANSS P3≥ 3) and
14 subjects had delusions (P1≥ 3). Due to increased vulnerability of
psychotic patients, treating psychiatrists ensured very carefully that
patients were able to provide informed consent for the study. Patients
were free of any current or past depressive or manic episode, major
depression, bipolar disorder, and substance abuse (except nicotine).
Two out of twenty-one patients were free of antipsychotic medication;
other patients received mono- or dual-therapy with atypical anti-
psychotics. For depressive patients, major depression was the primary
diagnosis. These patients had recurrent major depression with current
depressive episode. They were free of current or past psychotic symp-
toms, schizophrenia, schizoaffective disorder, bipolar disorder, and
substance abuse. One depressive patient was free of any psychotropic
medication during MRI assessment, other patients were treated by
mono-, dual-, or triple-therapy including antidepressants and neuro-
leptics. All healthy controls were free of any current or past neurolo-
gical or psychiatric disorder or psychotropic medication. More detailed
information of patients is summarized in Table 1.

2.2. MRI data acquisition

All subjects underwent T1-weighted, diffusion-weighted imaging
(DWI), and resting-state-functional MRI (rs-fMRI) in a 3 T Philips
Achieva using an eight-channel phased-array head coil. Participants

were instructed to keep their eyes closed and not to fall asleep during
the 10-minute rs-fMRI scans. We verified that subjects stayed awake by
interrogating via intercom immediately after the rs-fMRI scan. Brief
medical examination before and after scanning validated patients'
mental stability and investigated whether they had feelings of odd si-
tuations during the scanning. No patient dropped out during the scan-
ning session.

2.3. Brain network construction

2.3.1. Extraction of triple networks with independent component analysis
Nodes of DMN, SN and CEN were pre-defined by analysis of rs-fMRI

data of an independent sample of healthy controls. Briefly, 28 healthy
controls were scanned on the same MRI scanner by the same rs-fMRI
sequence. Data were preprocessed (motion correction, smoothing, and
normalization) and analyzed by independent component analysis as
described in (Manoliu et al., 2014b). Components-of-interest were se-
lected by spatial regression for given templates (Uddin et al., 2011).
Nodes of default mode, salience and central executive network were
defined as spherical regions-of-interest (ROI) of 3mm radius and local
peaks of networks. In total, 105 ROIs were generated to represent three
networks of interest: 38 ROIs for cortical central executive network, 30
ROIs for cortical default mode and 37 ROIs for cortical salience net-
work. The following analyses are based on these nodes.

2.3.2. Diffusion-based tractography and structural connectivity (SC)
To evaluate tract-based SC across network nodes, tractography of

individual DTI data was performed and related to cortical network
ROIs. In brief, firstly, network ROIs were transformed in individual DTI
space, and reduced to volumes without cerebral spinal fluid and with
fractional anisotropy (FA) < 0.2 indicating gray matter. Secondly,
after motion correction and voxel-wise diffusion tensor calculation, the
deterministic fiber tracking algorithm TEND (Lazar et al., 2003) was
applied, with all voxels with FA > 0.3 being selected as seed points of
fiber tracking (Lazar et al., 2003). Tracking stopped in voxels with
FA < 0.2 or physiologically implausible curvature of the track (> 60°)
(Lazar et al., 2003). Thirdly, the output of both ROI-based cortical
parcellation and diffusion tractography were combined to construct an
individual structural connectivity network for each subject. Con-
nectivity of each pair of ROIs was measured by fibers across the two
regions. If there exists at least one fiber with end-points in one pair of
regions (e.g., region i and region j), the two cortical regions are assumed
to be connected (Hagmann et al., 2008; Shao et al., 2012). For each
connection, FAij was used to reflect the weighted edge of a network, and
was defined as the mean value of FA across all voxel connecting fibers
between the two cortical regions.

2.3.3. Functional MRI and intrinsic functional connectivity (iFC)
To evaluate iFC across network nodes, rs-MRI signal correlation

analysis in (Meng et al., 2014) was performed. Preprocessing included
head motion correction, spatial normalization into the standard ste-
reotactic space of Montreal Neurological Institute with isotropic voxel
of 3× 3×3mm3, and spatial smoothing with a 6× 6×6mm3

Gaussian kernel to reduce spatial noise. Then data quality was tested in-
depth, particularly concerning motion-induced artifacts. Temporal
signal-to-noise ratio and point-to-point head motion were estimated for
each subject (Luo et al., 2015; Van Dijk et al., 2012). Excessive head
motion (cumulative motion translation or rotation>3mm or > 3°
and mean point-to-point translation or rotation > 0.15mm or>0.1°)
was applied as an exclusion criterion. Point-to-point motion was de-
fined as the absolute displacement of each brain volume compared with
its previous volume. None of the participants had to be excluded.
ANOVA and post-hoc t-tests yielded no significant differences between
groups regarding mean point-to-point translation or rotation of any
direction (ANOVA, p > .19) as well as temporal signal-to-noise ratio
(ANOVA, p > .40). To construct iFC networks, for each ROI, time

Table 1
Demographic and clinical characteristics.

SZP (n=21) MDD (n=25) Controls (n=28) pa

Age (years) 34.0(12.3) 48.8 (14.8) 42.0(17.5) < 0.05
Sex (f/m) 11/10 13/12 18/10
PANSS, total 80.8(20.8) 35.2 (3.4) 30.7(0.8) < 0.01
PANSS, positive 19.1(5.9) 7.8 (1.1) 7.29(0.53) < 0.01
PANSS, negative 19.1(6.1) 10.0 (2.3) 7.32(0.55) < 0.01
HAM-D 9.0(5.9) 22 (7.1) 0.9(1.1) < 0.01
GAF 41.5 (11.6) 50 (10.5) 99.5 (1.1) < 0.01

a Statistical testing was based on ANOVA. Abbreviations: SZP schizophrenia;
MDD major depressive disorder; PANSS, Positive and Negative Syndrome Scale;
Ham-D Hamilton depression scale; GAF Global Assessment of Functioning
Scale.
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series of rs-fMRI signal were extracted from each voxel, averaged within
each ROI, and then regressed against confounding covariates (com-
prising six time courses of head motion and signals derived from whole
gray matter, white matter and cerebrospinal fluid). To estimate the
intrinsic functional connectivity among different ROIs, Pearson's cor-
relation coefficients (Rij) of corresponding time courses of any two ROIs
i and j, were computed and transformed to z-values zij via r-to-z Fisher
transformation. Finally, for each individual subject, the iFC within and
between CEN, DMN and SN, respectively, was represented by corre-
sponding ensembles of zij.

2.4. Brain connectivity map

As mentioned, for each subject, we constructed structural and
functional connectivity networks across 105 nodes on the triple net-
work, respectively. The two connectivity networks were thus re-
presented as two 105× 105 data matrices. Since the two matrices are
symmetric, only the lower triangular part of the two matrices was re-
spectively reshaped as a m-dimensional vector, where
m=(105× (105− 1))/2=5460 is the number of connections.
Afterwards, the vectors derived from all patients with SZP and MDD
were concatenated as two structural and functional connectivity maps
(i.e., two m× n matrices, and n=25+21=46), where each column
represents the structural or functional connectivity for a subject. A
multimodal connectivity map was obtained after concatenating the two
maps together. In the following, we would work on the structural,
functional and multimodal (both structural and functional) connectivity
maps.

2.5. Classification via supervised convex nonnegative matrix factorization

In this study, we extracted complex but subtle changes of brain
network in latent space via NMF. In recent years, NMF has been in-
creasingly adopted in brain MRI data analysis to tackle multi-modal
data sets (Anderson et al., 2014; Arbabshirani et al., 2017). However,
nonnegative matrix factorization techniques in existing neuroimaging
data studies are usually unsupervised (Anderson et al., 2014; Sotiras
et al., 2015; Stamile et al., 2017). In this paper, we introduced a new
supervised NMF to discover discriminative low-rank patterns in latent
space as signatures, aiming to boost the classification performance.

2.5.1. Nonnegative matrix factorization
Formally, NMF aims to factorize a data matrix X into two non-ne-

gative lower dimensional matrices: a basis matrix A and a coefficient
matrix S.

−

≥ ≥

X AS

s t A S

min ‖ ‖

. . 0, 0
A S

T
F

,
2

(1)

where ‖ · ‖F2 is the Frobenius norm. In the context of neuroimaging
data analysis,X=[x1, … ,xn]∈ℝ+

m×n corresponds to the structural
or functional connectivity map, where n is the number of subjects, and
m is the number of connections for each subject. A∈ℝ+

m×k is the
basis matrix and its values show how much each structural or functional
connection is involved in the encoding latent space. S∈ℝ+

n×k is the
coefficient matrix representing individual patterns in latent space. In
addition, k is the latent dimensionality which is determined based on
the application at hand.

2.5.2. Supervised convex nonnegative matrix factorization
Original nonnegative matrix factorization (Lee and Seung, 1999)

was proposed to extract latent patterns with a nonnegative constraint.
Compared with other matrix factorizations without the constraint, such
as dictionary learning (Eavani et al., 2015; Mairal et al., 2012), it could
not decompose mixed-sign data. As shown in Eq. (1), the basis matrix A
and coefficient matrix S of original NMF should be nonnegative. It

means that the data X with negative values could not be decomposed to
the product of these two matrices. In the neuroimaging analysis, the
absolute value of functional connectivity means the strength of a cor-
relation between two nodes in time series, and the sign represents the
direction of this correlation. To apply NMF on the functional con-
nectivity, the negative correlation should be well handled. If we simply
remove negative values, the data will lose much information. There-
fore, a strategy should be introduced to handle negative values in our
study.

In unsupervised NMF, the extracted latent patterns may not have
strong discriminative power to separate disorders. Therefore, the in-
troduction of a supervised term would guide NMF to simultaneously
aim at representing raw data in a low-dimensional space and distin-
guishing subjects with different disorders. Adding the class information
into NMF will make the derived patterns discriminative. Recent studies
have introduced different supervised constraints in the matrix factor-
ization process. For example, by imposing Fisher constraints, Jia and
Turk (2004) developed the Fisher NMF (FNMF). By enforcing the spa-
tial locality and the separability between classes simultaneously,
Zafeiriou et al. (2006) proposed the discriminant NMF (DNMF). The
manifold regularization was adopted by Guan et al. (2011) for the
manifold regularization and margin maximization to NMF (called MD-
NMF). In addition, jointly exploiting both limited labeled and plenty of
unlabeled data, Lee et al. (2010) introduced a semi-supervised of NMF
(SSNMF). Recently, Shao et al. (2017) employed a cluster-based con-
straint to explore common and distinct patterns (CDNMF).

To better leverage the label information and well handle non-ne-
gative values in functional connectivity map, we proposed a new su-
pervised NMF, called SCNMF. Specifically, the SCNMF algorithm jointly
incorporates structural and functional connectivity maps and group
information. The objective function is as follows.

= − + −

≥ ≥

J B C S X XBS λ Y CS

s t B S
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where the first term is the objective function of Convex-NMF (Ding
et al., 2010) and the second term is one kind of supervised term (Lee
et al., 2010). Convex NMF is also of nonnegative constraint. However, it
replaces the nonnegative basis matrix A∈ℝ+

m×k with the product of a
data matrix X∈ℝ ±

m×n and a nonnegative basis matrix B∈ℝ+
n×k.

This part is conceivable of mixed-sign values. Therefore, it is possible
for Convex NMF to handle negative data while retaining the benefit of
the nonnegative constraint. Meanwhile, the supervised term is to ensure
that patients of the same disorders could be mapped to the same label
by adding the penalty term with label information. The label matrix
Y=[y1, … ,yn]∈ℝ+

l×n is encoded that each column yi consists of
zero elements except the jth entry which has one if instance xi belongs to
class j. l is the number of psychiatric disorder classes. In addition,
C∈ℝl×k is a basis matrix for label matrix Y, and λ is a tradeoff para-
meter to balance the importance of the supervised term.

To keep the nonnegative property of the basis and coefficient ma-
trices in the updates, a multiplication iterative strategy was applied.
The update rules of the three matrices are given as follows.

= +
+

+ −

− +B B X X S X X BS S
X X S X X BS S

( ) ( )
( ) ( )

T T T

T T T (3)

= + + +
+ + +
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Moreover, we can obtain the test data in the latent space as follows.
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+
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where

= ++X X X| |
2 (7)

= −−X X X| |
2 (8)

and X could be an arbitrary matrix here. Usually, the denominator of
Eqs. (3–5) is added with a small positive number to ensure divisors non-
zero. In our experiments, we set it as 10−9.

2.5.3. Support vector machine
Support Vector Machine (SVM) (Cortes and Vapnik, 1995) was used

to classify samples into one of two classes, i.e., patients with schizo-
phrenia and major depressive disorder. SVM is a basic and powerful
classifier used in many applications. It constructs a separating hyper-
plane between the training instances of both classes. The learned hy-
perplane is of the maximum margin with different class instances near
the distinct hyperplane, called support vectors. In learning stage, given
n patient training data xi∈ℝm (i=1, … ,n), and label vector Y∈ℝn×1

where yi∈ {1,−1}, the objective function is

∑+

+ ≥ −
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T
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i
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2

1

(9)

where εi is nonnegative variable, β is a penalty parameter (which is set
as 1 by default) and yi is the class label. In addition, w is a k dimensional
vector of weights, b is a bias scalar. In the classification stage, given
patient data x, the linear SVM predicts the class of patients with the
following function.

= +f x sign w x b( ) ( )T (10)

where f(x) is the classification function, and sign(⋅) is the sign function.

2.5.4. Classification with extracted patterns
Building upon the learned patterns via SCNMF, we classified the two

disorders with support vector machine. Specifically, the classification
procedure involves the following steps:

a) Concatenating structural and functional connectivity maps of pa-
tients as the joint connectivity matrix X.

b) Adopting leave-one-out cross validation strategy to partition multi-
modal connectivity matrix X into Xtrain and Xtest for each fold.

c) For each fold, decomposing Xtrain into basis matrix A and latent
pattern matrix Strain via SCNMF, which does alternate iterations with
Eqs. (3–5).

d) Obtaining the new test data Stest in the latent space by Eq. (6).
e) Training linear SVM classifier with train data Strain and classify with

test data Stest. The prediction performance is the average of all folds.

2.6. Interpretation analysis

In this section, we exploited the potential complex and subtle
changes based on the extracted patterns via interpretation analysis. The
value of the weight vector w reflects the importance of extracted pat-
terns during distinguishing different disorders. Therefore, it provides an
intuitive way to reveal the statistical correlation between the extracted
patterns and disorders. Since nonnegative matrix factorization is a
linear transformation, weights on latent components could be traced
back to structural or functional connections without losses. Specifically,
the value of basis matrix A is the product of the raw data X and the basis
matrix B in SCNMF. It could be regarded as a transform matrix, which
transforms the raw data into latent components, and thus can reversely
trace the extracted patterns back.

Under the same scale, the feature weights imply the importance that

how much the classifier considers corresponding features during the
classification. Thereby the classification contribution (CC) of structural
and functional connections could be obtained via tracing the weight
vector w back to structural and functional connectivity with the basis
matrix A as follows.

= ×CC A w (11)

Therefore, we can measure the contribution of each connection to a
correct classification via the backtracking strategy. Namely, once a
subject is correctly classified, we computed the contribution of each
connection with Eq. (11), and then averaged the contributions of each
connection for all correct classifications to measure its discriminative
power (DP):

∑=
⎛

⎝
⎜

⎞

⎠
⎟

= = …

DP mean CC
i y y i N

i
{ | , 1 }i i (12)

where yi means the predicted label of the test subject in each fold, and
N is the number of total folds.

It is worth mentioning that machine learning models usually guar-
antee to achieve a locally optimal point. The weights of the model tend
to capture a subset of features that are necessary to achieve a good
performance (Haufe et al., 2014). Without sufficient data, the model
cannot generalize well for all cases. So, the interpretation analysis here
is merely a guideline.

2.7. Evaluation

2.7.1. Selection of comparison algorithms
To demonstrate the effectiveness of our proposed approach, we

compared it with several classification paradigms, including Decision
Tree (Quinlan, 1993), Naïve Bayes (Domingos and Pazzani, 1997),
Support Vector Machine (SVM) (Cortes and Vapnik, 1995) and K-
Nearest Neighbor (KNN) (Aha et al., 1991). Also several feature selec-
tion methods were also investigated for comparison, including chi
square test (Pearson, 1894), Pearson correlation coefficient (PCC)
(Pearson, 1895), maximal information coefficient (MIC) (Reshef et al.,
2011) and recursive feature elimination RFE (Guyon et al., 2002). In
addition, a part of unsupervised dimension reduction approaches was
also considered, such as PCA (Jolliffe, 2011), naïve NMF (Lee and
Seung, 1999), Convex NMF (Ding et al., 2010) and SSNMF (Lee et al.,
2010). Moreover, we tested the method in (Koutsouleris et al., 2015),
which is involved with both PCA and RFE. All methods, including
SCNMF, were performed on the same constructed connectivity maps
and evaluated via leave-one-out cross validation strategy.

For classification paradigms, the decision tree algorithm was C4.5
(Quinlan, 1993) and the parameter of the nearest neighbor number in
KNN was tuned in the range of (3, 5, 7, 9). In SVM model, the kernel
function was chosen as the linear kernel. All feature selection and di-
mension reduction methods were followed with linear SVM. The RFE
was applied with the weights of linear SVM as correlation coefficients.
The trade-off parameter λ was set as 1 in SSNMF and SCNMF. In ad-
dition, with the nonnegative constraint, the value of functional con-
nectivity map was normalized from 0 to1 for naïve NMF and SSNMF.
The exact number of estimated components in all feature selection and
dimension reduction approaches was tuned to achieve the best results.

For the initialization, we applied the original initialization method
in Convex NMF (Ding et al., 2010) to stabilize and optimize result.
Specifically, S was initialized as S(0)=H+0.2E, where E is a matrix
with all elements being one, and H=(h1,h2, … ,hk) is the cluster in-
dicator matrix. Here, Hik={0,1} and the ones indicate cluster mem-
bership of each instance, obtained from K-means cluster algorithm. To
fix the cluster result, we set the first k instances as initial center points.
Moreover, B was initialized as B(0)= (H+0.2E)D−1, where
D= diag (d1,d2, … ,dk) is a diagonal matrix with corresponding ele-
ment being the count of points in each cluster. In addition, C was
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randomly initialized.

2.7.2. Evaluation metrics
In this study, we report the accuracy, sensitivity and specificity to

evaluate the classification.
performance, which are formally defined as follows.

= +
+ + +

=
+

=
+

Accuracy TP TN
TP FP TN FN

Sensitivity TP
TP FN

Specificity TN
TN FP (13)

where TP, FP, TN and FN are the number of truly classified positive
instances (MDD patients classified as MDD patients), falsely classified
positive instances (SZP patients classified as MDD patients), truly
classified negative instances (SZP patients classified as SZP patients)
and falsely classified negative instances (MDD patients classified as SZP
patients), respectively.

3. Results

3.1. Classification result

The classification performance is summarized in Table 2. Experi-
mental results demonstrated that SCNMF achieved a better classifica-
tion accuracy with multi-modal data (Two-Sample t-test with baseline
methods showing p-value < .05), compared to changeless accuracy or
even retrogression of other baseline methods with multi-modal data.
With leave-one-out cross validation strategy, we found that the SCNMF
with SVM on multi-modal connectivity connections yielded an accuracy
of 82.61% (p-value < .01 and 95%-confidence interval: 71.23 to
93.99%) with a specificity of 80.95% and sensitivity of 84.00%.

Furthermore, the performance of the proposed method SCNMF with
different values of balance parameter λ and latent dimension k is shown
in Fig. 2. From the figure, we can observe that SCNMF yields the best
result when λ=1 and k=9. The results against balance parameter λ
are relatively stable in a long range from 0.001 to 5, while the classi-
fication performance is fluctuated with different values of latent di-
mension k. We further discussed the tuning strategy of these two
parameters in Section 4.1.

3.2. Group-specific network signatures discovery

For the trained linear classifier, its knowledge, represented as the
value of weights w, demonstrates effectiveness of each latent pattern.
They could be traced back to structural and functional connections by
the basis matrix A of nonnegative matrix factorization for discovering
connections with high discriminative power. In Fig. 3, we illustrated the
discriminative connections with value of DP for each psychiatric dis-
order, and listed these connections with names in Table 3.

4. Discussion

In the study, measures of functional and structural brain con-
nectivity together with nonnegative matrix factorization technique
were used to study multi-modal triple network signatures to separate
schizophrenia from major depressive disorder. The proposed approach,
called SCNMF, extracts low-rank network patterns in a latent space,
with these patterns discriminating both disorders with a classification
accuracy of 82.6%.

4.1. A new approach to uncover low-rank network patterns

The basic hypothesis in the study is that specific changes in struc-
tural and functional connectivity of the two disorders are complex,
subtle, and distributed across the three brain networks. Such disrupted
patterns result in the difficulty of distinguishing the two disorders in the
original data space. Therefore, we proposed a new NMF-based ap-
proach, called SCNMF, which aims at extracting these changes in a
latent space instead of the original data space. As mentioned above, the
idea of NMF is to represent raw data in a low-dimensional space to
discover the hidden patterns. Experiment results showed a good clas-
sification performance with the extracted low-rank network patterns
discovered by SCNMF. In addition, to interpret our results well, the
discovered patterns in a latent space were further interpreted as the
specific disrupted changes of structural and functional connectivity in
the original space with a traceback strategy. Findings of current study
suggest that low-rank network patterns may have the potential of
providing an imaging- and network-based signatures for the distinction
between major depressive disorder and schizophrenia. It further in-
dicates that NMF-based approaches provide a deeper insight into the
study of psychiatric disorders, which is also demonstrated by recent
works (Shao et al., 2017).

4.2. High classification performance on multi-modal data

In Table 2, we can see that SCNMF yields good performances in both
single-modal and multi-modal cases. Specifically, it produces 69.57%
and 73.91% classification accuracy with structural connectivity and
functional connectivity respectively. For multi-modal data analysis,
SCNMF achieves 82.61% classification accuracy (with 80.95% specifi-
city and 84.00% sensitivity). The high performance achieved by SCNMF
is of the following potential reasons: (1) For most neuroimaging studies,
the data is often with high dimensionality, which not only brings the
computing complexity, but more importantly, causes a well-known ef-
fect of “curse of dimensionality” (Hughes, 1968), where most tradi-
tional classification algorithms tend to fail. Therefore, the dimension-
ality reduction of subspace learning introduced in this study provides a
potential way to tackle this problem. (2) For high-dimensional neu-
roimaging data, the disrupted patterns are usually embedded in a lower
space (i.e., a low-dimensional latent space). It is because that not all
features contribute to an effective representation. An intuitive example
is a 2-D manifold embedded in 3-D space. These patterns may be
complex and subtle (e.g., the group-specific changes of MDD and SZP,
shown in Fig. 3), and traditional approaches are difficult to master this
situation. The proposed approach allows capturing these distributed
changes effectively by imposing the supervised constraint on NMF. As

Table 2
Classification accuracies of proposed and baseline methods.

Model SCa FCb SC+ FC

Decision Tree 54.35% 60.87% 60.87%
Naïve Bayes 56.52% 60.87% 71.74%
k-NN 54.35% 71.74% 54.35%
SVM 63.04% 60.87% 63.04%
Chi2 test 67.39% 71.74% 67.39%
PCC 67.39% 71.74% 71.74%
MIC 67.39% 69.57% 67.39%
RFE 69.57% 71.74% 71.74%
PCA 67.39% 71.74% 73.91%
PCA+RFE 67.39% 71.74% 76.09%
Naïve NMF 63.04% 73.91% 76.09%
SSNMF 69.57% 73.91% 78.26%
Convex NMF 65.22% 73.91% 78.26%
SCNMF 69.57% 73.91% 82.61%

a SC is structural connectivity.
b FC is functional connectivity. This table reports the best performances of

the proposed and baseline methods with tuned parameters. SCNMF achieved
such performances with the latent dimensionality as 15, 39, 9 for SC, FC and
multi-modal case, respectively.
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mentioned in the introduction, previous works could also yield a good
performance with a dimension reduction and feature selection
(Koutsouleris et al., 2015). In all, the highly discriminative power of
extracted patterns shows our approach is a promising way to analyze
multi-modal data.

4.3. Group-specific disrupted patterns in schizophrenia and major
depressive disorder

Half of specific structural changes of schizophrenia determined in
this study was embodied in the prefrontal cortex. Correspondingly,
abnormalities of the prefrontal cortex in schizophrenia over health

Fig. 2. The sensitivity of the balance parameter λ and estimated dimension k on classification accuracy.

Fig. 3. The illustration of group-specific multi-modal network signatures. The discovered most discriminative structural and functional connections in current study
of schizophrenia and major depressive disorder are respectively demonstrated. The top 20 discriminative connections for each psychiatric disorder. The effectiveness
of structural and functional connections was traced back from the weight of classifier. The brain regions in triple network, and structural and functional connections
could be distinguished by colours, and the volume of brain regions and the discriminative power are demonstrated by size.
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controls have been extensively documented at the regional, edge and
sub-network level (Fornito et al., 2011; Salvador et al., 2010; Zhou
et al., 2007). In addition, the volume change of angular gyrus in schi-
zophrenia has been noticed (Niznikiewicz et al., 2000), causing ab-
normal angular gyrus asymmetry. Neuroimaging studies of schizo-
phrenia have also shown volume and cortical thickness reductions in a
network of gray matter structures including insula, anterior cingulate
gyrus and prefrontal cortex (Bora et al., 2011; Busatto et al., 2010; van
Haren et al., 2011). On the other hand, we can observe that the specific
disrupted changes in major depressive disorder are distributed in the
three triple networks (Table 2, Fig. 3). Specifically, superior frontal gyri
in default mode network is discovered as a ‘hotspot’. Prefrontal cortex
including left medial frontal gyrus and superior frontal gyrus in salience
network are identified, which is consistent with a large number of
previous works (Glahn et al., 2008; Honea et al., 2008; Hoptman et al.,
2008; Kyriakopoulos et al., 2008; Reetz et al., 2008). Reduced volumes
of subgenual cingulate and anterior cingulate cortex have been shown

in patients with major depressive disorder relative to controls (Bora
et al., 2012; Hajek et al., 2008; Koolschijn et al., 2009; Videbech and
Ravnkilde, 2004). Moreover, reduced volume and thinning of pre-
frontal, insular and cingulate regions were reportedly related to MDD
symptoms (Du et al., 2012; Hajek et al., 2008; Taki et al., 2005; Tu
et al., 2012). Interestingly, occipital cortex, besides left middle occipital
gyrus determined as a prominent region in this study, was documented
about GABA concentration changes in patients with major depressive
disorder compared to health controls (Maciag et al., 2010; Sanacora
et al., 2002). In addition, the parietal lobule is interpreted as a struc-
tural pattern to determine major depressive disorder in this study.
However, its functional abnormalities were almost reported when
compared to health controls. It seems to be a potential special dis-
criminative pattern.

At the functional level, functional connectivity was identified to
play an important role in distinguishing schizophrenia from major de-
pressive disorders. Interestingly, middle cingulate cortex was

Table 3
Discriminative structural and functional connections between major depressive disorder and schizophrenia.

A: Discriminative structural connections between major depressive disorder and schizophrenia

MDD SZP

Name (ALL) Name (ALL) DP Name (ALL) Name (ALL) DP

Frontal_Inf_Oper_L Temporal_Sup_L 1.14 Frontal_Sup_Medial_R Frontal_Sup_R 0.78
Frontal_Mid_L Frontal_Sup_R 1.07 Insula_R Frontal_Inf_Tri_L 0.76
Frontal_Sup_Medial_R Frontal_Sup_L 1.06 Frontal_Mid_L Frontal_Inf_Tri_L 0.65
Postcentral_R Insula_R 1.04 Parietal_Inf_L Angular_L 0.59
Occipital_Mid_L Calcarine_L 1.04 Frontal_Inf_Orb_L Frontal_Sup_L 0.58
Cingulum_Ant_R Frontal_Sup_Medial_R 1.01 Frontal_Sup_Medial_L Cingulum_Ant_L 0.57
Frontal_Sup_Medial_R Frontal_Sup_L 0.99 Angular_L Temporal_Mid_L 0.54
Angular_L Precuneus_L 0.95 Angular_R SupraMarginal_R 0.54
Precuneus_R Occipital_Mid_R 0.94 Frontal_Sup_R Cingulum_Ant_R 0.52
Occipital_Mid_L Frontal_Inf_Oper_L 0.93 Insula_L Frontal_Inf_Orb_L 0.52
Frontal_Sup_L Frontal_Inf_Tri_L 0.92 Temporal_Pole_Sup_L Frontal_Sup_Medial_L 0.51
Occipital_Sup_R Occipital_Mid_R 0.92 Frontal_Sup_R Frontal_Sup_Medial_L 0.51
Parietal_Inf_R Insula_R 0.92 Frontal_Sup_Medial_L Cingulum_Mid_R 0.51
SupraMarginal_R Frontal_Mid_R 0.91 Insula_R Insula_R 0.51
SupraMarginal_R Insula_R 0.91 Frontal_Sup_L Frontal_Sup_Medial_R 0.50
SupraMarginal_R Frontal_Sup_R 0.91 Insula_R Frontal_Inf_Oper_R 0.49
Frontal_Mid_R Frontal_Inf_Tri_L 0.91 Frontal_Mid_R Frontal_Inf_Tri_R 0.48
Angular_L Frontal_Sup_L 0.91 Precuneus_L Frontal_Inf_Oper_L 0.48
Parietal_Inf_L Frontal_Mid_L 0.91 Cingulum_Mid_R Frontal_Sup_L 0.48
Parietal_Sup_R Insula_R 0.91 Cingulum_Mid_L Cingulum_Mid_L 0.48

B: Discriminative functional connections between major depressive disorder and schizophrenia

MDD SZP

Name (ALL) Name (ALL) DP Name (ALL) Name (ALL) DP

Parietal_Inf_R Precuneus_L 0.74 Cingulum_Mid_L Angular_L 1.04
Parietal_Inf_R Precuneus_L 0.73 Angular_L Cingulum_Mid_L 1.02
Cingulum_Mid_L Temporal_Sup_L 0.73 Angular_L Cingulum_Mid_L 0.99
Cingulum_Mid_L Frontal_Inf_Oper_R 0.69 Frontal_Inf_Tri_R Frontal_Sup_R 0.95
Frontal_Inf_Tri_R Parietal_Sup_R 0.68 Parietal_Inf_R Frontal_Sup_R 0.92
Cingulum_Mid_L Temporal_Pole_Sup_L 0.67 Angular_R Frontal_Sup_R 0.92
Cingulum_Mid_L Insula_R 0.67 Cingulum_Mid_L Cingulum_Post_L 0.90
Parietal_Inf_R Frontal_Inf_Oper_L 0.63 Parietal_Inf_L Cingulum_Mid_L 0.88
Angular_R Precuneus_L 0.62 Parietal_Inf_R Frontal_Sup_R 0.87
Frontal_Sup_R Frontal_Mid_R 0.62 Angular_R Cingulum_Mid_L 0.85
Frontal_Sup_R Precuneus_L 0.62 Temporal_Mid_L Cingulum_Mid_L 0.81
Parietal_Inf_R Cingulum_Mid_R 0.62 Cingulum_Mid_L Angular_R 0.81
Parietal_Inf_R Parietal_Sup_R 0.61 Frontal_Mid_L Cingulum_Mid_L 0.80
Parietal_Inf_R Frontal_Mid_R 0.61 Frontal_Sup_R Frontal_Sup_R 0.79
Angular_L Parietal_Inf_R 0.61 Insula_L Cingulum_Ant_L 0.79
Frontal_Sup_Medial_L Precuneus_L 0.61 Frontal_Sup_R Cingulum_Mid_L 0.76
Cingulum_Mid_L Frontal_Mid_L 0.61 Angular_R Frontal_Sup_R 0.75
Parietal_Inf_L Precuneus_L 0.60 Insula_L Cingulum_Ant_R 0.75
Frontal_Sup_R Frontal_Inf_Oper_R 0.60 Frontal_Sup_R Frontal_Sup_R 0.74
Parietal_Inf_R Frontal_Inf_Oper_L 0.59 SupraMarginal_R Frontal_Sup_R 0.74
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discovered as the most prominent region for distinguishing schizo-
phrenia from major depressive disorders in functional connectivity.
However, the functional specificity of middle cingulate gyrus in schi-
zophrenia was rarely reported, and thus it should be paid attention to.
In the study, the left inferior parietal lobule (especially angular gyrus)
in central executive network is also considered as a key region in
schizophrenia, consistent with the finding of previous literatures when
it is compared with health controls (Minzenberg et al., 2009; Salgado-
Pineda et al., 2004; Torrey, 2007). The strongly affected regions in
language-related areas (Broca's area and the inferior parietal lobule), as
well as the anterior insula seemed to be reasonable, since a recent meta-
analysis concluded that the auditory hallucinations in schizophrenia
patients is associated with aberrant activity bilaterally in those regions
(Jardri et al., 2011). In addition, in line with the finding of current
study, widespread patterns of brain activity deficits in prefrontal and
posterior cingulate have been found in patients with schizophrenia
against health controls (Kuhn and Gallinat, 2013). Moreover, inferior
parietal lobule and cingulate cortex are considered the most prominent
in major depressive disorder. It seems reasonable since the parietal lobe
dysfunction has been identified by the cerebral blood flow data
(Mayberg et al., 1999; Sackeim et al., 1990) and limbic-paralimbic
(subgenual cingulate) blood flow were identified to increase in sadness
(Baker et al., 1997; George et al., 1995). Also impaired episodic
memory in patients with major depressive disorder has been discovered
to associate with left medial temporal dysfunction (Brody et al., 2001).
In addition, functional abnormalities in prefrontal cortex and the pre-
cuneus have also been identified in depression relative to healthy
controls (Baxter Jr. et al., 1989; Frodl et al., 2010; Mayberg, 1994).

4.4. Potential limitations

Although SCNMF has some advantages over many state-of-the-art
algorithms, it also has the following limitations: (1) The determination
of parameters, such as the balance parameter λ and latent dimension-
ality k, is an open question of dimension reduction methods, including
nonnegative matrix factorization. Usually, the suggestion interval of
balance parameter λ is between 0.01 and 1, and the number of esti-
mated components k should be less than the minimum of instance
number n and feature number m. In practice, they can be estimated on
the validation set based on the classification performance. Apart from
that, several intrinsic dimensionality estimation methods can be em-
ployed, which can be found in the drtoolbox (Van der Maaten et al.,
2007). (2) Moreover, this neuroimaging study worked on a relatively
small sample set. Therefore, classification results, especially upon
baseline methods, are conceivably limited in accuracy. By extracting
discriminative latent patterns in a new subspace, the proposed ap-
proach SCNMF provides a new venue to separate two disorders with
high classification performance. Meanwhile, it is worth reminding
readers that although the proposed method promises a good perfor-
mance, with data limitation, the discovered patterns may not be that
general. (3) Although the meaning and unit of the structural and
functional connectivity values are the same, different ranges of features
would cause different variances of data. It may make the machine
learning method hard to capture effective patterns.

5. Conclusion

In this study, we examined the complex but subtle network changes
in schizophrenia and major depressive disorder via supervised non-
negative matrix factorization. This method integrates structural and
functional connections in three intrinsic brain networks into low-rank
patterns, allowing discovering group-specific differences effectively.
Experimental results show a good classification performance, further
demonstrating the discriminative power of extracted patterns.
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